
Journal o1" Statistical Physics Vol. 87. Nos. 5/6. 1997 

Aggregation Beyond the Gel Point: 
A New Class of Exactly Solvable Models 

P. G. J. van Dongen I 
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The existing models describing the kinetics of aggregation in the presence of an 
infinite cluster, or gel, are reviewed, and a new class of post-gel models is 
proposed. In this new class of models, clusters are assumed to be acyclic and the 
rate constant for reactions involving the gel can be varied. The model is called 
the generalized a~Tclic mode/ (GAM) since it generalizes Stockmayer's model 
and Ziff's third model. It is shown that the GAM can be solved exactly in terms 
of standard (hypergeometric) functions. The solutions are analyzed in detail, 
both asymptotically in various limits and numerically. 
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1. I N T R O D U C T I O N  

There exists a close relationship between the kinetic and equilibrium 
theories of polymerization. The kinetic theory of polymerization was 
founded in 1916 by Smoluchowski, (~" 2) who wrote down an infinite set of 
coupled chemical rate equations for the concentrations ck(t) of polymers of 
size k (or k-mers) at time t: 

r~ 

Ea = �89 ~, K~ic,c/- ca. ~ Ka:,c/ (1) 
i + j = k  j =  I 

Here K U is "the rate constant for reactions between clusters of size i and size 
j. If the initial state consists only of monomers, the appropriate starting 
point for the solution of ( I ) is the so-called monodisperse initial condition, 
ck(O) = M(O)6kl. One of the reasons why Smoluchowski's equation is of 
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interest in physics is the possible occurrence of a nonequilibrium phase 
transition. This transition is characterized by the formation of an infinite 
cluster (or gel) after a finite time to. Until such a gelation transition occurs, 
Smoluchowski's equation conserves the total concentration of monomeric 
units, M ( t ) = Z k k c k ( t ) =  M(0). The concentration of monomeric units will 
be normalized to unity below, M(0)= 1, which can be achieved by an 
appropriate choice of the unit of volume. The kinetic equation (1) allows 
for several exactly solvable models. A first example, corresponding to 
K~= 1 and the monodisperse initial condition, was given already by 
Smoluchowski. Several other exactly solvable models have since been 
found, all of which have the bilinear form Ko.=A + B ( i + j ) + C i j .  Apart 
from the knowledge gained from these exactly solvable models, much is 
known about the structure of the solution of Smoluchowski's equation for 
large classes of rate constants in various limits. Examples are the long-time 
limit, 13) the limit of large cluster sizes, 14) and, most importantly, the scaling 
limit. ~ 5 

On the other hand, the equilibrium theory of polymerization tradi- 
tionally employs combinatorial methods. ~6"7~ A typical example is the 
so-called RA./.-model, in which monomers carry f identical (but distin- 
guishable) reactive groups. The monomers can react with one another and 
form larger clusters. In the RA.r-model it is assumed that reactions are 
possible only between reactive groups on different clusters, so that loops do 
not occur. This implies that k-mers are branched structures having k - 1  
bonds and ak(f)  =- ( f -  2) k + 2 unreacted reactive groups. All reactive 
groups are assumed to be a priori equally reactive. The equilibrium size dis- 
tribution can then be determined by the standard methods of statistical 
mechanics, i.e., by writing down the entropy functional and calculating the 
most probable distribution. The result can conveniently be formulated in 
terms of the extent of  reaction o~ of the system, which is defined as the frac- 
tion of all reactive groups that have actually reacted. One finds that the 
concentration ?k(e) of clusters of size k takes the form 

~k(~) = A(~) ~.~(~)~ (2) 

where A(e)=f(1-~)2/o~, ~(o~)=o~(1-oOs-z/f and ~ .  satisfies the recur- 
sion relation 

(k-1)~.=�89 ~ Ko~.~ ~ (3) 
i + j = k  

which is to be solved subject to ~ = 1. The constants ~4~ represent the 
number of different k-mer configurations. Their explicit form is ,A~.= 
f*[  ( f  - 1) k ]!/[ a , ( f ) !  k! ]. 
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The close connection between the kinetic and equilibrium theories of 
polymerization was first addressed by Stockmayer ~7~ and then, in more 
detail, by ZiW 8~ and Ziff and Stell. tgl These authors pointed out that the 
equilibrium size distribution ?k(~) found above for the RAy-model, also 
provides the exact solution for Smoluchowski's equation (1) with rate con- 
stants K U = a~(f) trj(f) and monodisperse initial conditions, if one supplies 
the extent of reaction ~ with the appropriate time dependence. Insertion of 
(2) into (1) yields ~ = f ( 1 - ~ ) - ~ ,  so that the solution of Smoluchowski's 
equation for the RAy-model is given by Ck(t)=~k(~(t)), with oc(t)= 
ft/(1 + ft). 

An interesting complication occurs as the extent of reaction increases 
from ~ = 0 to a critical value ct,. = ( f - 1 )  - t .  At ~,. one observes that the 
average cluster size diverges: 

o:_. 1 + a  
( k )  =M2(0Q = ~ k2Ck(~) - oo (c( T ~ )  (4) 

k=l 1 - - ( f - - 1 ) ~  

The same divergence obviously occurs in the kinetic theory of polymeriza- 
tion for tTt  c, where tr is defined by ~ ( t ~ ) = ~ .  The interpretation of the 
divergence is wellknown: at 0c~ an infinite cluster, or gel, is formed. Since 
the RAy-model, as it stands, contains assumptions concerning finite-size 
clusters only, one has to supplement it with a description of the infinite 
cluster in order to make definite statements about the post-gel stage. 
Clearly an infinity of gelmodels is possible in principle. Two models for 
the post-gel stage (proposed by Flory and by Stockmayer, respectively) 
are exactly soluble and very wellknown. I briefly review their properties 
below. A third post-gel model has been proposed by Ziff 18~ and Ziff and 
Stell. 191 The exact solution of this third model is, to the best of my 
knowledge, as yet unknown. In addition, I will present a new class of 
models which generalize Stockmayer's and Ziff's models and preserve the 
restriction that loops do not occur. This new class will be referred to as 
the generalized acyclic model (GAM). The main point of this paper is to 
show that both the third model and the GAM can be solved exactly in 
terms of sfandard functions. The properties of the exact solution will be 
discussed in detail. 

This paper is organized as follows. First, in Section 2, I review the 
post-gel models proposed by Flory, Stockmayer, and Ziff and introduce the 
new GAM. The exact solution of the GAM (and hence also of the third 
model) is presented in Section 3. The properties of the solution are studied 
in various limits. A summary of the results and a discussion are given in 
Section 4. 

822/87/5-6-20 
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2. MODELS FOR THE POST-GEL STAGE 

Different post-gel models are characterized by different assumptions 
concerning the allowed reactions between the finite-size clusters (the sol) and 
the infinite cluster (or gel) and also by different assumptions concerning 
reactions within the gel. In this paper attention is restricted to post-gel 
versions of the RAr-model. Accordingly all post-gel models to be discussed 
below correspond to modifications of Smoluchowski's equation of the form 

6k=�89 ~ Kijcicj--ck k KA:iC/--ak(f) ck X(t) (5) 
i + . j  = k . j  = I 

where K~i = a ; ( f )  a.i(f) and X(t) represents the properties of the gel. Physi- 
cally, one expects that X(t) will be proportional to the concentration [A.~,-] 
of free reactive groups in the gel. Then, the kinetic equation (5) is to be 
supplemented with a constitutive equation for [A~] in the various post-gel 
models. However, independent of the detailed form of [A~], one can 
already conclude from the linear k-dependence of ak(f) in (5) that the size 
distribution ck(t)= CA.(at) can be cast into the form 

~k(cr = M~k(~r (6) 

where (~(ct~) is given by (2) and 0 ~<ar This observation was made 
also by ZiffJ s~ Physically, the form (6) simply states that the post-gel dis- 
tribution of solclusters can be characterized by an extent of reaction cr and 
that the sol mass is given by ~kkgk(cr M, where M is strictly less than 
unity for 0r > ~r The dependence of cr and M upon time (or upon ar is of 
course different in different post-gel models. 

In the simplest possible post-gel model, which was proposed by Flory, 
it is assumed that the pre-gel distribution (2), with ct > 0%, is valid also in 
the post-gel stage. This fixes X(t) in (5). The time dependence of 0r is 
given by the same equation ~ = f ( 1 - c t ) ' - ,  or o~(t)=fi/(l+ft), as for 

<c to, Comparison of (2) and (6) shows that the extent of reaction ~.,.(ct) 
in the sol is given by the smallest positive real root of d(ct.,.)=((ct). Thus 
c~.,.(t) is known, since ~(t) is known. Note the hierarchy 0 < cq. < c% < e < 1. 
The sol mass in Flory's model follows as M=A(oO/A(o~.,.)< 1. The inter- 
pretation of Flory's post-gel model is already clear from the chemical rate 
equation ~/=f(1 _e)2,  which implies that any pair of reactive groups in 
the system is allowed to react. Since this implies in particular that any pair 
of reactive groups on the (macroscopically large) gelcluster may react, it is 
clear that the gel in Flory's model cannot be acyclic.-' 

-' Note, however, that the s o l - c l u s t e r s  in Flory's model are acyclic, since the rate of loop for- 
mation in finite-size clusters is inversely proportional to the system size. This rate therelbre 
vanishes in the thermodynamic limit. 
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The latter point, that the gel in Flory's model contains loops, has been 
criticized by Stockmayer, who pointed out that the occurrence of loops 
violates one of the basic assumptions underlying the derivation of the size 
distribution. Instead, Stockmayer proposed a different solution, in which 
the gel is acyclic. In addition, the extent of reaction in the sol is assumed 
to be pinned at its critical value, 0L,.---~. The standard interpretation of 
Stockmayer 's  solution in terms of the kinetic model (5) is that the gel is 
inactive? This follows by insertion of the Ansatz (6) into (5), since a consis- 
tent solution requires that the reactivity of the gel vanishes: X ( t ) =  0. It is 
clear that the absence of sol-gel reactions makes Stockmayer 's additional 
assumption, that the gel be acyclic, redundant. In this sense Stockmayer 's 
model provides a description for the sol only. 

In addition to the Flory- and Stockmayer-type post-gel models, a 
third model has been proposed by Ziff ~8~ and Ziff and Stell/9~ The basic 
idea of the third model is that the gel is acyclic, as assumed by Stock- 
mayer, but that (in contrast to Stockmayer 's  model) sol-gel reactions are 
allowed. This model treats sol-sol and sol-gel reactions in a symmetric 
manner, in that both types of  reactions have the same rate constant: 
X(t) = [A.~]. Physically, it would be of interest to tone down this restric- 
tion. Various mechanisms, such as steric hindrance or a lower diffusion 
rate of the gel, might cause the effective sol-gel rate constant to differ from 
the rate constant for reactions between finite clusters. To incorporate this 
effect I propose a new class of models, in which the acyclic nature of all 
clusters is retained, but the reaction rates for sol-sol and sol-gel reactions 
may differ. This corresponds to X ( t ) = x [ A .  F] in (5), with an arbitrary 
nonnegative rate constant x. This new class of models includes the third 
model ( x =  1) and Stockmayer 's  model ( x = 0 )  as special cases. Below I 
will refer to the new class of models as the generalized acyclic model, or 
GAM. 

For all models 
implies that [A~,"] = 
of reaction in the 
follows as 

of GAM type, the condition, that the gel be acyclic, 
( f - 2 ) ( 1 -  M) in (5) or, equivalently, that the extent 
gel is ~ = 2 / f  The extent of reaction in the sol 

~.,. = ~ 2(k - 1 ) ck f kck  = 1 -- (7) 
k = l  ~ k = l  

This is the sttuuhird, ~s'~ but not the on/y possible interpretation of Stockmayer's model. 
Stockmayer's assumption ct,.=~xr is also compatible with a sol-gel interaction of the form 
-6c~ X(t), where 6 is k-independent. This alternative interpretation, although perhaps inter- 
esting at a more abstract level, has no combinatorial meaning in the RAt-model. where 
# = tr~l.f)= (.1-2)k +2 represents the number of free A-groups on a k-mer. 
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where M o = ~ k c k ( t )  represents the total concentration of finite-size 
clusters. This in turn implies that the total extent of reaction is given by 
o:=Mo~. , .+(1-M)o~g=2(1-Mo) / f ,  which may be inverted to yield 
Mo = 1 -foL/2. Insertion into (7) leads to a first relation between the three 
variables M, 0~.~, and ~: 

A second relation between M, 0~.~, and ~ will be constructed below by 
imposing that the post-gel size distribution (6) satisfies Smoluchowski's 
equation (5). As a result of these two relations, only one of the variables 
M, ~,., and 0t can be considered independent. 

3. EXACT S O L U T I O N  OF THE GENERALIZED ACYCLIC  M O D E L  

In order to obtain a functional relation between the as-yet-inde- 
pendent variables ~.,. and M, I first derive two coupled equations for the 
time evolution of e(t) and M(t). The starting point is the kinetic equation 
for the GAM, which is given by (5) with X ( t ) = x [ A .  F] and x>~0. The rate 
equation for the extent of reaction ~ follows from combination of (5) and 
the relation 0c = 2 ( 1 -  Mo) / f  One finds 

2 1 F 
d =  -- ~ A)/o = ~ [A.,. ] - + f  [A.F][A F] 

= M( I -- o~.,.)[fM( 1 -- o~.,.) + 2x ( f - -  2)( 1 -- M)]  (9a) 

where [A F] = ( f - - 2 ) ( 1 -  M) has been used and [A. F] follows from 

EA:1= 
k = l  k = l  

Note that d in (9a) is now known as a function of ~,. and M only. Similarly 
the time dependence of the sol mass M(t)  can be determined by multiplica- 
tion of (5) with k and summation over all k. The result is 

ll)i= --x[ A F] M[(f -2)  Mz(~x.,.)+2] 

= - K f ( f -  2) M(1 - M) A(o~,) (9b) 

where A(u)=  ( 1 -  u)/[ 1 -  ( f - 1 ) u ] .  In the derivation of (9b) the explicit 
form of M2(~s) in (4) and that of [A. F] have been used. For the third 
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model ( x =  1), the coupled equations (9) are equivalent to Eqs. (C10) and 
(C11) in ref. 9. Below it is shown how these equations can be solved exactly 
for all x ~> 0. 

The method of solution to be presented below contains two steps. As 
a first step it appears to be convenient to eliminate the time variable and 
derive a differential equation for as(M).  The differential equation for 0s 
can then be solved after a few suitable transformations. Once %(M) is 
known, one can (as a second step) reintroduce the original time variable 
and calculate M ( t )  from (9b) by separation of variables. The fact that the 
GAM becomes soluble if formulated in terms of the extent of reaction once 
more reflects the close relationship between the kinetic and equilibrium 
theories of polymerization. 

I start with the first step, the derivation of a differential equation for 
~s(M). The easiest way to do this is to note that d can be rewritten as 
d = l ( l ( o ~ , . - 2 / f + M d a s / d M )  on account of (8). Division of (9a) by (9b) 
thus leads to a relation between a.,., M, and doq./dM. This relation can be 
rewritten as a first-order nonlinear differential equation for 0s 

das ( f - 2 )  oq. ( 1 - o ~ , . ) [ 1 - ( f - 1 ) o ~ , ]  

a M  - f M  x ( f  - 2)( 1 - M )  
(lo) 

The structure of this result is already much simpler than the starting point 
(9). Note that (10) is an equation of Riccati type. The initial condition 
e.,.( 1 ) = 0t c = ( f  - 1 ) - ~ also fixes the value of the derivative at ~ = ac as 

(ch.,./dM)~ = ( f -  2) x / [ f ( f -  1 )( 1 + x)]  

This result differs in general (i.e., for x:~ 1) from the behavior found in 
Flory's model, which has 

(d%/dM)r  = ( f  -- 2 ) / [ 2 f ( f  -- 1)] 

For  future reference, I also note that the large-time behavior of as(M), 
which corresponds to M~0,  follows from (10) as 

% ( M )  ~ C M '  - 2/y_ fM 
2 x ( f -  2) 

+ -.- (MS0;  x > 0 )  (11) 

where the integration constant C remains as yet undetermined. This can be 
compared to Flory's model, which has 0~, ~ M ~ - 2 / J ,  so that C Fl~ 1 for 
all f > 2. 
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3.1. Solution in Several Special Limits 

Before addressing the general solution of (10), I consider several 
relatively simple limits. First, in the limit l,- J, 0 one expects ~,. ~ ~c, which 
is the solution of Stockmayer's model. Indeed one finds that (10) allows for 
a solution of the form 

L ] ~ c  l - - j ~ ( f - - 2 ) ( l - - M )  +~0(K 2} (K{0) (12) 

Second, in the limit ~c--* or, Eq. (I0) allows for a simple solution, namely 

~,. ~ c M '  -'-/ (1,-~ or) (13) 

Clearly, the aggregation process in the post-gel stage will take place on a 
very fast time scale, of order 1/x, in this limit. Third, one finds relatively 
simple expressions for the rescaled extent of reaction ~ - j k , .  in the high- 
functionality limit ( f ~  ~ ). The result tbr general t,-> 0 is given by 

~.,.(M)=MF( 1, 1;1 + I ; 1 - M )  ( f =  co) (14) 

where F(a, b; c; x) denotes a hypergeometric function; see ref. 10. For the 
particular parameter values in (14), the hypergeometric function is essen- 
tially an incomplete beta function; see Eq. (6.6.8) of ref. 10. A simpler result 
is obtained for the third model (~c= 1), since in this case (14) reduces to 
~.,.(M)=Mln(M J ) / (1 -M) .  This result coincides with that found for 
Flory's model, since loops are unimportant in the limit f--* ~ .  

3.2. Solution of the General Model 

Next I proceed and solve the general equation (10) for the GAM by 
means of a few suitable transformations; As a first step it is convenient to 
transform from ~,. to a new variable y =A(~.~)- 1, where A(u)= ( 1 -  u)/ 
[ 1 - ( f - 1 ) u ]  has been introduced below (9b). Note that A is its own 
inverse, A2=~,  so that reversely ~ . , .=A(y+l ) .  The transformation 
y=A(~. , . ) -1  is motivated by the asymptotic behavior of ~,. for MT 1 and 
MS0, since it maps the interval 0 < a ,  < ~c onto the positive real axis: one 
finds that 

y(M)~f(l+~,)/[(f--1)t,-(1-M)]~c~ as MT1 
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while y(M)+O for MJ,0. The function y(M) satisfies another Riccati 
equation, 

dy f - 1  y 2 + [  f-____2 1 ] Y 1 
dM f M  [ f M  K( 1 - m) ]  K( 1 - M) 

This first-order nonlinear differential equation can be transformed to a 
second-order linear differential equation by means of the substitution 
y(M) = - f M ( f  - I)-~ z'(M)/z(M). The result is 

M ( 1 - M ) z " +  + - M z ' - l z = O  
f~- 

This is a special case of the hypergeometric differential equation. In the 
notation of ref. 10, Chapter 15, the parameters (a, b, c) in the differential 
equation are determined by a + b = - [ ( f -  2 ) / f  + I/h-], ab = { f -  1)/fK, 
and c = 2 / f  If desired, a and b can easily be calculated explicitly. According 
to ref. 10, Eqs. (15.5.5) and (15.5.6), the hypergeometric differential equa- 
tion has two independent solutions, wj~t~(M) and w2~(M), which have 
different critical behavior: w ~ , ) ~ l  and w 2 ~ ] ) ~ ( 1 - M )  ' + ' / '  for MTI .  
I now impose the initial value (do%/dM)~ = ( f - 2 ) a / [ f ( f -  1)(1 + a')] and 
find that the physical solution is given by w2~(M), so that 

- ( M ) = ( 1 - M ) J + ~ " ' F  l + - + a , l +  + b ; 2 +  ;1 
K K K 

This yields for the function y(M) on account of Eq. (15.2.1) of ref. 10 

JM( 1 + K) 
y(M) - 

( f  - 1)(l - M ) ~ -  

M ( f +  1 +2a-) F ( 2 +  1/a'+a, 2 +  1/K+b; 3 +  1/a'; I - M )  
+ (16) 

( f -  1)(1 +2K) F(1 + 1 / a+a ,  1 + 1 /x+b ;  2 +  1/a; l - M )  

The explicit M-dependence of oL(M) and 0t(M) now follows from ~.,.(M)= 
A(y + 1) and relation (8), respectively. This concludes the first step in the 
solution of Eq. (9). 

The second step in the solution of (9) has now become simple. Since 
~.,.(M) is explicitly known, the calculation of M(t) in (9b) for t> t~= 
l / f  ( f - 2 )  has been reduced to a single quadrature, namely 

I,t = a'(t - t~)/t~ =- 
dx  

l"(t)  (17) 
v, x(l - x ) [ y ( x ) +  1] 
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with y(M) given by (16). For x = 0 ,  insertion of Eq. (12) into (17) yields 
the well-known result for the sol mass in Stockmayer's model, M(t)= 
[1 +b~(t-tc)/tc] -t with b~ = f / ( f - 1 ) .  For all x > 0 ,  it is convenient to 
introduce a rescaled time variable z ( t )=  x ( t -  tc)/tc. At large times (3 ,> 1) 
one then finds that the sol mass decreases exponentially, M(t) ~ Z(x) e-~C'), 
where the prefactor Z (K)>0  is explicitly known in terms of a finite 
integral. 

3.3. Va r ious  L imi ts  and N u m e r i c a l  Resul ts  

Consider the general solution c~,(M)= A(y + 1 ), with y = y(M) deter- 
mined by (16). The exact solution should obviously agree with the 
asymptotic results (12)-(14) obtained in the limits x~0, x--,oo, and 
f - - ,  oo. I checked that this is indeed the case by expanding (15) in powers 
of x, l/K, and 1If respectively. Another limit of interest is M+0,  which is 
relevant at large times. This limit will be discussed in more detail. 

The behavior of ~.,.(M) for M $ 0 follows from the asymptotic behavior 
of (15), which can be determined from the linear transformation formula 
(15.3.6) of ref. 10 for hypergeometric functions. One finds full agreement 
with (11), including the subdominant term. In addition, one finds an 
explicit expression for the constant C, which remained undetermined in 
( 11 ), namely 

C =  
B ( - ( f - 2 ) / f ,  2( f - -  1 ) / f +  1/x + b) 

( f -  1)B(1 + 1/x+a, ( f - 2 ) / f )  

where B(x, y) is the beta function. An interesting special case occurs in the 
high-functionality limit ( f  ~ oo). In this case one finds that 

'( )) 1E 
C=~-~ 1+ +~-~ ~b(1)-~k +(9 ( f - - .oo)  

where ~b(x) is the digamma function 11~ and ~(I)  is related to Euler's con- 
stant: qJ (1)=-7-  Insertion of C into (11) and inspection of the result 
shows that the limits M 10 and f--* oo do not commute. If one takes the 
limit f - *  oo first and then M.~0, one obtains 

On the other hand, if one takes the limit M J, 0 first and then f ~ oo, one 
finds that 07,.(M)~ CM, with a divergent prefactor C~f/2K. The conclu- 
sion is that, in order to obtain the correct small-M behavior for all f,  
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Fig. 1. (a) The extent of  reaction in the sol e ,  and (b) the sol mass M, both as a function 
of the total extent of reaction e, for f = 3 and various values of the sol-gel rate constant: 
~ = 0.0, 0.5, 1.0, 2.0, oo. 
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including f - -  co, one has to take also the subleading term in the small-M 
expansion into account. 

Next I present a graphical analysis of the results derived above. For 
reasons of uniformity, I focus on trifunctional units ( f = 3 ) .  In Fig. 1, 
results are presented for the extent of reaction in the sol ( ~ )  and the sol 
mass (M) as a function of the total extent of reaction ct, for various values 
of the rate constant K. It is seen that both 0c.,. and M steadily decrease 
as a function of ~', approaching a finite limit as ~---* co. Note that 
~ = 1/2 < ~  < ~ ,  =2 /3  for f =  3. Second, to study the time dependence of 
o~(t), I calculated M(t) from (17) and inserted the result into 0~(M). For 
K = 0  one finds a simple explicit result: o~=2[l -b ,_M(t )] / f  with 
b2 = ( f - 2 ) / 2 ( f -  1) and M(t)  as calculated below (17). For various values 
of ~,-> 0 the extent of reaction 0c is sketched in Fig. 2 as a function of the 
rescaled time variable r(t)=~'( t- t , ) / t~.  One finds that 0~(r) steadily 
decreases as 1,- increases. At fixed ~" the extent of reaction approaches the 
asymptote ct=2/ f  exponentially fast as a function of time: ( 2 / f - 0 c ) ~  
2 Z ( K ) e - V f  for r--* co. The prefactor Z(K) of the exponential time 
dependence can be determined numerically. For i< =0.5, 1.0, 2.0, and ~ ,  
one finds Z(K) ~ 0.0523, 0.0874, 0.1309, and 0.2530, respectively. For  I< ~ 0, 
one finds analytically that Z(K) oc re. In addition, for i," = co, both the time 
dependence M(r)  and the prefactor Z(K) can be calculated exactly. One 
finds, e.g., the remarkable result Z ( c o ) =  2 3 ' : 7 3 - ' ~ : 7 e - " / 7  ~ 

Fig. 2. 
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0 1 2 3 

Resca]ed time "~ 

The extent  of react ion ~(t) as a function of the rescaled t ime var iable  r =-~,( t -  t~ I/t~, 
for f = 3 and var ious  values  of the sol gel ra te  cons tan t :  t, = 0.5, 1.0, 2.0, ~ .  
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4. S U M M A R Y  A N D  D I S C U S S I O N  

In this paper I reviewed several kinetic models for aggregation beyond 
the gel point, notably those proposed by Flory, Stockmayer, and Ziff and 
Stell. In addition I proposed a new two-parameter class of models that 
retains the restriction that all clusters be acyclic and allows for different 
rate constants for sol-sol and sol-gel reactions. I showed that this 
generalized acyclic model (GAM) is exactly solvable in terms of standard 
(hypergeometric) functions and discussed the properties of the solution in 
various limits. A graphical representation of various physical quantities was 
generated numerically. 

The solution presented here focuses on the RA/.-model, which 
describes the polymerization of monomers carrying f reactive A-groups. 
Accordingly, f ~  ~ in chemistry. It should be noted, however, that in our 
theory f is merely a parameter, which might equally well be taken real 
(J'E R), w i th f  > 2 in order to obtain gelation. Also note that the GAM can 
easily be formulated for other polymerization models, such as the so-called 
A tRB.~-model (where monomers carryfA-groups and g B-groups and only 
A-B bonds are allowed). 

A generalization of the GAM that includes also Flory's model is 
obtained if, in addition to sol-gel reactions with rate constant x~, one allows 
also for cross-l#~king in the gel, with rate constant h'_,. The size distribution of 
this (h-~, x2)-model has again the form (6). One finds two coupled nonlinear 
first-order differential equations for ~,. and [ A ~'] as functions of M, which can 
be solved at least numerically. The time dependence of M(t) then follows 
from a third, separable equation for )Q, similar to (9b). 

Another extension would be the inclusion of fi'agmentation. The 
description of fragmentation of finite size clusters is by now well known. ~ 
In the post-gel stage, one has to allow also for fragmentation of the gel. 
Accordingly, a term of the form +2bk(~) has to be added to (5), where 2 
is the fragmentation strength and bk(~) is the concentration of gel bonds 
joining a cluster of size k to the rest of the gel. Then Eq. (5) has to be sup- 
plemented with an appropriate kinetic equation for bk(~). A possible exact 
solution of the GAM in the presence of fragmentation would clearly be of 
interest, sifice the explicit form of bk(~) might reveal many details of the gel 
structure, including its dependence on the sol-gel rate constant. 

As a last possible extension I would like to mention the study of spa- 
tialfluctuations, which are neglected in the present rate equation approach. 
Spatial fluctuations have already been investigated in detail ~j-~ for the 
special model K0.= 0", which corresponds to the high-functionality limit of 
the third model (x = 1 ). It would certainly be of fundamental interest if the 
results of ref. 12 could be extended to the GAM at finite values o f f  
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